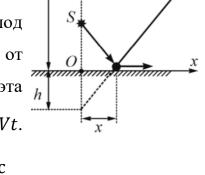
Задание 1


Под настольной лампой, находящейся на высоте h=1 м над поверхностью стола, по столу проложены прямые рельсы (проходящие строго под лампой). По ним со скоростью V=1 м/с катится маленькая тележка с лежащим на ней горизонтально зеркальцем. С какой скоростью u бежит светлое пятнышко по потолку? Высота потолка над столом H=2 м.

Максимум за задачу 10 баллов.

Возможное решение

Изобразим ход лучей на рисунке. Координата светлого пятна x_1 связана с координатой тележки x соотношением подобия

 x_1 : x = (H + h):b. Принимая в качестве начала отсчета времени момент прохождения тележки под лампой, запишем зависимость координаты x тележки от времени t: в силу равномерности движения эта зависимость имеет вид x = Vt. Отсюда $x_1 = \frac{H+h}{h}Vt$.

Следовательно, скорость пятна $u = \frac{x_1}{t} = \frac{H+h}{h}V = 3$ м/с

Критерии оценивания

Баллы	Правильность (ошибочность) решения
10	Полное верное решение
2	Рисунок хода лучей
3	соотношением подобия x_1 : $x = (H + h)$: b
2	Соотношение $x_1 = \frac{H+h}{h}Vt$
3	Получен правильный ответ $u = \frac{H+h}{h}V = 3$ м/с
0	Решение отсутствует

Задание 2

В калориметр с водой и льдом погрузили проволоку сопротивлением $R=800\,$ Ом и стали пропускать ток силой $I=1\,$ А. На графике приведена зависимость температуры T в калориметре от времени t. Определите начальную массу льда m_1 и начальную массу воды в жидком состоянии m_2 . Удельная теплота плавления льда $\lambda=336\,$ кДж/кг, удельная теплоёмкость воды $c=4200\,$ Дж/(кг°С).

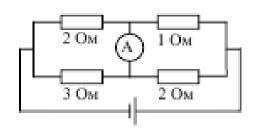
Максимум за задачу 10 баллов.

Возможное решение

Как следует из графика, за время $\tau_1 = 10$ мин. = 600 с в калориметре плавится лед, а еще за время $\tau_2 = 3$ мин. = 180 с вся вода нагревается от 0 °C до 10 °C, на $\Delta t = 10$ °C. На первом этапе получено количество теплоты λm_1 , на втором этапе — количество теплоты $c(m_1 + m_2) \Delta t$. Поскольку мощность электронагревателя составляет I^2R , составим уравнения:

т, мин

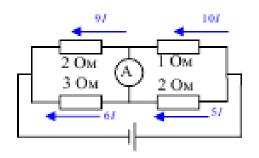
$$I^2R \tau_1 = \lambda m_1$$
 и $I^2R \tau_2 = c(m_1 + m_2) \Delta t$.


Следовательно, $m_1 = I^2 R \, \tau_1 / \lambda \cong 1{,}43 \, \mathrm{к}$ г и $m_2 = I^2 R \, \tau_2 / (c \Delta t) - m_1 \cong 2 \, \mathrm{k}$ г.

Критерии оценивания

Баллы	Правильность (ошибочность) решения
10	Полное верное решение
1	Определение по графику время плавления льда $ au_1 = 600 \ c$
1	Определение по графику время нагревания воды т ₂ = 180 с
2	Определение теплоты плавления λm_1
2	Определение количество теплоты нагревания воды $c(m_1 + m_2) \Delta t$.
2	Определение мощности электронагревателя составляет I^2R
2	Получен правильный ответ — $m_1 = I^2 R au_1/\lambda \cong 1,43 $ кг и $m_2 = I^2 R au_2$
	$/(c\Delta t)$ - $m_1 \cong 2$ кг.
0	Решение отсутствует

Задание 3


Найдите показания идеального амперметра в схеме на рисунке, если напряжение на батарейке V=4 В.Значения сопротивлений резисторов указаны на рисунке в Омах.

Максимум за задачу 10 баллов.

Возможное решение

Сопротивление идеального амперметра равно нулю, поэтому можно считать, что резисторы 2 Ом и 3 Ом, а также 1 Ом и 2 Ом включены попарно параллельно.

Общее сопротивление цепи 6/5 Ом + 2/3 Ом = 28/15 Ом. Сила тока, текущего через источник, 60/28 = 15/7 А.

В верхней ветви цепи текут токи 10/7 A и 9/7 A, в нижней ветви - 5/7 A и 6/7 A. Поэтому сила тока, текущего через амперметр, равна 1/7 A $\cong 0,143$ A.

Распределение токов в цепи показано на схеме (для удобства введено обозначение I=1/7 A.

Критерии оценивания

Баллы	Правильность (ошибочность) решения
10	Полное верное решение
1	Сопротивление идеального амперметра равно нулю
3	Общее сопротивление цепи $6/5 \text{ Om} + 2/3 \text{ Om} = 28/15 \text{ Om}$
1	Сила тока, текущего через источник, 60/28 = 15/7 А
3	Определены токи через сопротивления
2	Получен правильный ответ – $I = 1/7$ A
0	Решение отсутствует

Задание 4

Газон поливают из шланга, направляя струю под углом $\alpha = 60^{\circ}$ к горизонту. Определите диаметр d струи в верхней точке траектории, если внутренний диаметр шланга равен $d_{\circ} = 1$ см, а струя в процессе движения не распадается на капли. Считать, что диаметр шланга много меньше высоты подъёма.

Максимум за задачу 10 баллов.

Возможное решение

Пусть V_0 — начальная скорость струи. В верхней точке вертикальная проекция скорости обращается в нуль, а горизонтальная проекция остаётся неизменной и равной V_0 соѕ α . Поскольку расход воды должен оставаться неизменным, начальная площадь поперечного сечения струи S_0 связана с площадью поперечного сечения струи S в верхней точке траектории соотношением $S_0V_0 = SV_0$ соѕ α . Учитывая, что площадь пропорциональна квадрату диаметра струи, запишем $d_0^2 V_0 = d^2V_0$ соѕ α и получим, $d = \frac{d_0}{\sqrt{cos}\alpha} = 1,4$ см.

Критерии оценивания:

Если школьник довел решение задачи до правильного ответа, он получает 10 баллов. Правильным считается ответ как в числовом виде, так и в виде формулы, выраженной через диаметр ё_о. В противном случае школьник может получить до 4 утешительных баллов:

отмечено, что горизонтальная проекция скорости при движении в поле тяжести не меняется - 1

балл;

модуль скорости в верхней точки траектории правильно выражен через начальную скорость - 1

балл;

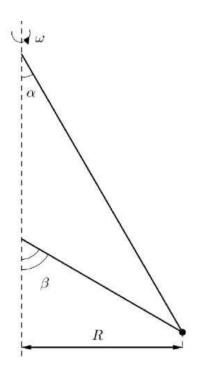
площадь сечения струи обратно пропорциональна скорости - 1 балл; площадь сечения струи пропорциональна квадрату диаметра струи - 1 балл.

Критерии оценивания

Баллы	Правильность (ошибочность) решения
10	Полное верное решение
2	горизонтальная проекция скорости при движении в поле тяжести не меняется
2	модуль скорости в верхней точки траектории $V_0 \cos \alpha$
2	площадь сечения струи обратно пропорциональна скорости
2	площадь сечения струи обратно пропорциональна скорости
2	Получен правильный ответ – $d=\frac{d_0}{\sqrt{cos\alpha}}=1,4$ см.
0	Решение отсутствует

Максимум за задачу 10 баллов.

Задание 5


Шарик на нитях. Небольшой шарик массой m движется в горизонтальной плоскости по окружности радиуса K=25,0 см вокруг вертикальной оси. Шарик удерживают две нити (рисунок), составляющие с осью вращения углы $\alpha=30^{\circ}$ и $\beta=60^{\circ}$. Найдите значения угловой скорости ω при которых силы натяжения нитей отличаются в 2 раза. Ускорение свободного падения g=9,81 м/с 2 .

Возможное решение

1. Пусть верхняя нить натянута сильнее. Тогда:

$$m\omega^{2}R = 2Tsin\alpha + Tsin\beta,$$

 $mg - 2Tcos\alpha - Tcos\beta = 0.$

Решая эту систему уравнений получим:

$$\omega_1 = \sqrt{\frac{g(2sin\alpha + sin\beta)}{R(2cos\alpha + cos\beta)}} = 0.914\sqrt{\frac{g}{R}} = 5.7 \text{ c}^{-1}.$$

2. Пусть теперь нижняя нить натянута сильнее. Тогда:

$$m\omega^2 R = Tsin\alpha + 2Tsin\beta,$$

 $mg - Tcos\alpha - 2Tcos\beta = 0.$

Решая эту систему уравнений получим:

$$\omega_2 = \sqrt{\frac{g(\sin\alpha + 2\sin\beta)}{R(\cos\alpha + 2\cos\beta)}} = 1,09\sqrt{\frac{g}{R}} = 6,8 \text{ c}^{-1}.$$

Критерии оценивания

Баллы	Правильность (ошибочность) решения
10	Полное верное решение
3	Записана система уравнений для 1 случая
1	Решена система уравнений
1	Получен численный ответ
3	Записана система уравнений для 2 случая
1	Решена система уравнений
1	Получен численный ответ
0	Решение отсутствует